精品中文字幕在线网站-亚洲欧美国产一区二区综合-国产精品国三级国产专不卡-深夜福利视频中文字幕一区二区

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認證產(chǎn)品(AEC-Q100/Q101)

74HC191D

Presettable synchronous 4-bit binary up/down counter

The 74HC191 is an asynchronously presettable 4-bit binary up/down counter. It contains four master/slave flip-flops with internal gating and steering logic to provide asynchronous preset and synchronous count-up and count-down operation. Asynchronous parallel load capability permits the counter to be preset to any desired value. Information present on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs when the parallel load (PL) input is LOW. This operation overrides the counting function. Counting is inhibited by a HIGH level on the count enable (CE) input. When CE is LOW internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The up/down (U/D) input signal determines the direction of counting as indicated in the function table. The CE input may go LOW when the clock is in either state, however, the LOW-to-HIGH CE transition must occur only when the clock is HIGH. Also, the U/D input should be changed only when either CE or CP is HIGH. Overflow/underflow indications are provided by two types of outputs, the terminal count (TC) and ripple clock (RC). The TC output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches '15' in the count-up-mode. The TC output will remain HIGH until a state change occurs, either by counting or presetting, or until U/D is changed. Do not use the TC output as a clock signal because it is subject to decoding spikes. The TC signal is used internally to enable the RC output. When TC is HIGH and CE is LOW, the RC output follows the clock pulse (CP). This feature simplifies the design of multistage counters as shown in Figure 1 and Figure 2. In Figure 1, each RC output is used as the clock input to the next higher stage. It is only necessary to inhibit the first stage to prevent counting in all stages, since a HIGH on CE inhibits the RC output pulse. The timing skew between state changes in the first and last stages is represented by the cumulative delay of the clock as it ripples through the preceding stages. This can be a disadvantage of this configuration in some applications. Figure 2 shows a method of causing state changes to occur simultaneously in all stages. The RC outputs propagate the carry/borrow signals in ripple fashion and all clock inputs are driven in parallel. In this configuration the duration of the clock LOW state must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. Since the RC output of any package goes HIGH shortly after its CP input goes HIGH there is no such restriction on the HIGH-state duration of the clock. In Figure 3, the configuration shown avoids ripple delays and their associated restrictions. Combining the TC signals from all the preceding stages forms the CE input for a given stage. An enable must be included in each carry gate in order to inhibit counting. The TC output of a given stage it not affected by its own CE signal therefore the simple inhibit scheme of Figure 1 and Figure 2 does not apply. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC.

Features and benefits

  • Wide supply voltage range from 2.0 to 6.0 V

  • CMOS low power dissipation

  • High noise immunity

  • Latch-up performance exceeds 100 mA per JESD 78 Class II Level B

  • CMOS input levels

  • Synchronous reversible counting

  • Asynchronous parallel load

  • Count enable control for synchronous expansion

  • Single up/down control input

  • Complies with JEDEC standards:

    • JESD8C (2.7 V to 3.6 V)

    • JESD7A (2.0 V to 6.0 V)

  • ESD protection:

    • HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V

    • CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V

  • Specified from -40 °C to +85 °C and -40 °C to +125 °C

參數(shù)類型

型號 VCC (V) Output drive capability (mA) Logic switching levels tpd (ns) Power dissipation considerations Tamb (°C) Rth(j-a) (K/W) Ψth(j-top) (K/W) Rth(j-c) (K/W) Package name
74HC191D 2.0?-?6.0 ± 5.2 CMOS 22 low -40~125 67 1 24 SO16

封裝

型號 可訂購的器件編號,(訂購碼(12NC)) 狀態(tài) 標示 封裝 外形圖 回流焊/波峰焊 包裝
74HC191D 74HC191D,653
(933714600653)
Active 74HC191D SOT109-1
SO16
(SOT109-1)
SOT109-1 SO-SOJ-REFLOW
SO-SOJ-WAVE
WAVE_BG-BD-1
暫無信息

環(huán)境信息

型號 可訂購的器件編號 化學成分 RoHS RHF指示符
74HC191D 74HC191D,653 74HC191D rohs rhf rhf
品質(zhì)及可靠性免責聲明

文檔 (11)

文件名稱 標題 類型 日期
74HC191 Presettable synchronous 4-bit binary up/down counter Data sheet 2024-03-14
AN11044 Pin FMEA 74HC/74HCT family Application note 2019-01-09
SOT109-1 3D model for products with SOT109-1 package Design support 2020-01-22
Nexperia_package_poster Nexperia package poster Leaflet 2020-05-15
SO16_SOT109-1_mk plastic, small outline package; 16 leads; 1.27 mm pitch; 9.9 mm x 3.9 mm x 1.35 mm body Marcom graphics 2017-01-28
SOT109-1 plastic, small outline package; 16 leads; 1.27 mm pitch; 9.9 mm x 3.9 mm x 1.75 mm body Package information 2023-11-07
74HC191D_Nexperia_Product_Reliability 74HC191D Nexperia Product Reliability Quality document 2024-06-16
SO-SOJ-REFLOW Footprint for reflow soldering Reflow soldering 2009-10-08
HCT_USER_GUIDE HC/T User Guide User manual 1997-10-31
SO-SOJ-WAVE Footprint for wave soldering Wave soldering 2009-10-08
WAVE_BG-BD-1 Wave soldering profile Wave soldering 2021-09-08

支持

如果您需要設(shè)計/技術(shù)支持,請告知我們并填寫 應(yīng)答表 我們會盡快回復(fù)您。

模型

文件名稱 標題 類型 日期
SOT109-1 3D model for products with SOT109-1 package Design support 2020-01-22

訂購、定價與供貨

型號 Orderable part number Ordering code (12NC) 狀態(tài) 包裝 Packing Quantity 在線購買
74HC191D 74HC191D,653 933714600653 Active 暫無信息 2,500 訂單產(chǎn)品

樣品

作為 Nexperia 的客戶,您可以通過我們的銷售機構(gòu)訂購樣品。

如果您沒有 Nexperia 的直接賬戶,我們的全球和地區(qū)分銷商網(wǎng)絡(luò)可為您提供 Nexperia 樣品支持。查看官方經(jīng)銷商列表

How does it work?

The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.

可訂購部件

型號 可訂購的器件編號 訂購代碼(12NC) 封裝 從經(jīng)銷商處購買
74HC191D 74HC191D,653 933714600653 SOT109-1 訂單產(chǎn)品
华安县| 额敏县| 炉霍县| 泸西县| 新民市| 甘孜县| 舒兰市| 西藏| 若羌县| 大安市| 松江区| 红河县| 敦煌市| 土默特右旗| 屏东市| 安图县| 清丰县| 磐安县| 大石桥市| 怀化市| 廉江市| 福鼎市| 九江市| 子洲县| 尼木县| 漳浦县| 莱州市| 禄丰县| 理塘县| 德庆县| 天全县| 鄂尔多斯市| 桂阳县| 旌德县| 平乡县| 南昌县| 周至县| 闻喜县| 庆城县| 余庆县| 苏尼特左旗|